Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 210: 106323, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331410

RESUMO

Anaerobic fungi (Neocallimastigomycetes) found in the guts of herbivores are biomass deconstruction specialists with a remarkable ability to extract sugars from recalcitrant plant material. Anaerobic fungi, as well as many species of anaerobic bacteria, deploy multi-enzyme complexes called cellulosomes, which modularly tether together hydrolytic enzymes, to accelerate biomass hydrolysis. While the majority of genomically encoded cellulosomal genes in Neocallimastigomycetes are biomass degrading enzymes, the second largest family of cellulosomal genes encode spore coat CotH domains, whose contribution to fungal cellulosome and/or cellular function is unknown. Structural bioinformatics of CotH proteins from the anaerobic fungus Piromyces finnis shows anaerobic fungal CotH domains conserve key ATP and Mg2+ binding motifs from bacterial Bacillus CotH proteins known to act as protein kinases. Experimental characterization further demonstrates ATP hydrolysis activity in the presence and absence of substrate from two cellulosomal P. finnis CotH proteins when recombinantly produced in E. coli. These results present foundational evidence for CotH activity in anaerobic fungi and provide a path towards elucidating the functional contribution of this protein family to fungal cellulosome assembly and activity.


Assuntos
Celulossomas , Celulossomas/genética , Celulossomas/química , Celulossomas/metabolismo , Escherichia coli/metabolismo , Anaerobiose , Proteínas de Bactérias/química , Esporos/metabolismo , Trifosfato de Adenosina/metabolismo , Fungos
2.
Curr Opin Biotechnol ; 78: 102840, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356377

RESUMO

The primary obstacle impeding the more widespread use of biomass for energy and chemical production is the absence of a low-cost technology for overcoming their recalcitrant nature. It has been shown that the overall cost can be reduced by using a 'consolidated' bioprocessing (CBP) approach, in which enzyme production, biomass hydrolysis, and sugar fermentation can be combined. Cellulosomes are enzyme complexes found in many anaerobic microorganisms that are highly efficient for biomass depolymerization. While initial efforts to display synthetic cellulosomes have been successful, the overall conversion is still low for practical use. This limitation has been partially alleviated by displaying more complex cellulsome structures either via adaptive assembly or by using synthetic consortia. Since synthetic cellulosome nanostructures have also been created using either protein nanoparticles or DNA as a scaffold, there is the potential to tether these nanostructures onto living cells in order to further enhance the overall efficiency.


Assuntos
Celulose , Celulossomas , Celulose/metabolismo , Celulossomas/genética , Celulossomas/metabolismo , Hidrólise , Biomassa , Fermentação
3.
Proc Natl Acad Sci U S A ; 117(5): 2385-2394, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953261

RESUMO

Cellulosomes, which are multienzyme complexes from anaerobic bacteria, are considered nature's finest cellulolytic machinery. Thus, constructing a cellulosome in an industrial yeast has long been a goal pursued by scientists. However, it remains highly challenging due to the size and complexity of cellulosomal genes. Here, we overcame the difficulties by synthesizing the Clostridium thermocellum scaffoldin gene (CipA) and the anchoring protein gene (OlpB) using advanced synthetic biology techniques. The engineered Kluyveromyces marxianus, a probiotic yeast, secreted a mixture of dockerin-fused fungal cellulases, including an endoglucanase (TrEgIII), exoglucanase (CBHII), ß-glucosidase (NpaBGS), and cellulase boosters (TaLPMO and MtCDH). The confocal microscopy results confirmed the cell-surface display of OlpB-ScGPI and fluorescence-activated cell sorting analysis results revealed that almost 81% of yeast cells displayed OlpB-ScGPI. We have also demonstrated the cellulosome complex formation using purified and crude cellulosomal proteins. Native polyacrylamide gel electrophoresis and mass spectrometric analysis further confirmed the cellulosome complex formation. Our engineered cellulosome can accommodate up to 63 enzymes, whereas the largest engineered cellulosome reported thus far could accommodate only 12 enzymes and was expressed by a plasmid instead of chromosomal integration. Interestingly, CipA 2B9C (with two cellulose binding modules, CBM) released significantly higher quantities of reducing sugars compared with other CipA variants, thus confirming the importance of cohesin numbers and CBM domain on cellulosome complex. The engineered yeast host efficiently degraded cellulosic substrates and released 3.09 g/L and 8.61 g/L of ethanol from avicel and phosphoric acid-swollen cellulose, respectively, which is higher than any previously constructed yeast cellulosome.


Assuntos
Membrana Celular/metabolismo , Celulossomas/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Celulossomas/enzimologia , Celulossomas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/genética , Clostridium thermocellum/genética , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
4.
Biotechnol Bioeng ; 117(3): 626-636, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31814100

RESUMO

Cellulosomes are large plant cell wall degrading complexes secreted by some anaerobic bacteria. They are typically composed of a major scaffolding protein containing multiple receptors called cohesins, which tightly anchor a small complementary module termed dockerin harbored by the cellulosomal enzymes. In the present study, we have successfully cell surface exposed in Escherichia coli a hybrid scaffoldin, Scaf6, fused to the curli protein CsgA, the latter is known to polymerize at the surface of E. coli to form extracellular fibers under stressful environmental conditions. The C-terminal part of the chimera encompasses the hybrid scaffoldin composed of three cohesins from different bacterial origins and a carbohydrate-binding module targeting insoluble cellulose. Using three cellulases hosting the complementary dockerin modules and labeled with different fluorophores, we have shown that the hybrid scaffoldin merged to CsgA is massively exposed at the cell surface of E. coli and that each cohesin module is fully operational. Altogether these data open a new route for a series of biotechnological applications exploiting the cell-surface exposure of CsgA-Scaf6 in various industrial sectors such as vaccines, biocatalysts or bioremediation, simply by grafting the small dockerin module to the desired proteins before incubation with the engineered E. coli.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana , Proteínas de Ciclo Celular , Celulase/genética , Celulossomas/química , Celulossomas/genética , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Appl Microbiol Biotechnol ; 103(17): 6885-6902, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31309267

RESUMO

The secretome, the complement of extracellular proteins, is a reflection of the interaction of an organism with its host or substrate, thus a determining factor for the organism's fitness and competitiveness. Hence, the secretome impacts speciation and organismal evolution. The zoosporic Chytridiomycota, Blastocladiomycota, Neocallimastigomycota, and Cryptomycota represent the earliest diverging lineages of the Fungal Kingdom. The review describes the enzyme compositions of these zoosporic fungi, underscoring the enzymes involved in biomass degradation. The review connects the lifestyle and substrate affinities of the zoosporic fungi to the secretome composition by examining both classical phenotypic investigations and molecular/genomic-based studies. The carbohydrate-active enzyme profiles of 19 genome-sequenced species are summarized. Emphasis is given to recent advances in understanding the functional role of rumen fungi, the basis for the devastating chytridiomycosis, and the structure of fungal cellulosome. The approach taken by the review enables comparison of the secretome enzyme composition of anaerobic versus aerobic early-diverging fungi and comparison of enzyme portfolio of specialized parasites, pathogens, and saprotrophs. Early-diverging fungi digest most major types of biopolymers: cellulose, hemicellulose, pectin, chitin, and keratin. It is thus to be expected that early-diverging fungi in its entirety represents a rich and diverse pool of secreted, metabolic enzymes. The review presents the methods used for enzyme discovery, the diversity of enzymes found, the status and outlook for recombinant production, and the potential for applications. Comparative studies on the composition of secretome enzymes of early-diverging fungi would contribute to unraveling the basal lineages of fungi.


Assuntos
Celulossomas/enzimologia , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/enzimologia , Animais , Evolução Biológica , Biopolímeros/metabolismo , Celulossomas/genética , Celulossomas/metabolismo , Proteínas Fúngicas/genética , Fungos/genética , Fungos/metabolismo , Genoma Fúngico/genética , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rúmen/microbiologia
6.
Proteins ; 87(11): 917-930, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31162722

RESUMO

Cellulolytic clostridia use a highly efficient cellulosome system to degrade polysaccharides. To regulate genes encoding enzymes of the multi-enzyme cellulosome complex, certain clostridia contain alternative sigma I (σI ) factors that have cognate membrane-associated anti-σI factors (RsgIs) which act as polysaccharide sensors. In this work, we analyzed the structure-function relationship of the extracellular sensory elements of Clostridium (Ruminiclostridium) thermocellum and Clostridium clariflavum (RsgI3 and RsgI4, respectively). These elements were selected for comparison, as each comprised two tandem PA14-superfamily motifs. The X-ray structures of the PA14 modular dyads from the two bacterial species were determined, both of which showed a high degree of structural and sequence similarity, although their binding preferences differed. Bioinformatic approaches indicated that the DNA sequence of promoter of sigI/rsgI operons represents a strong signature, which helps to differentiate binding specificity of the structurally similar modules. The σI4 -dependent C. clariflavum promoter sequence correlates with binding of RsgI4_PA14 to xylan and was identified in genes encoding xylanases, whereas the σI3 -dependent C. thermocellum promoter sequence correlates with RsgI3_PA14 binding to pectin and regulates pectin degradation-related genes. Structural similarity between clostridial PA14 dyads to PA14-containing proteins in yeast helped identify another crucial signature element: the calcium-binding loop 2 (CBL2), which governs binding specificity. Variations in the five amino acids that constitute this loop distinguish the pectin vs xylan specificities. We propose that the first module (PA14A ) is dominant in directing the binding to the ligand in both bacteria. The two X-ray structures of the different PA14 dyads represent the first reported structures of tandem PA14 modules.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Clostridium/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biomassa , Celulossomas/química , Celulossomas/genética , Clostridium/química , Clostridium/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Alinhamento de Sequência
7.
Methods Enzymol ; 617: 241-263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30784404

RESUMO

Cell-surface display of designer cellulosomes complexes has attracted increased interest in recent years. These engineered microorganisms can efficiently degrade lignocellulosic biomass that represents an abundant resource for conversion into fermentable sugars, suitable for production of biofuels. The designer cellulosome is an artificial enzymatic complex that mimics the architecture of the natural cellulosome and allows the control of the positions, type, and copy number of the cellulosomal enzymes within the complex. Lactobacillus plantarum is an attractive candidate for metabolic engineering of lignocellulosic biomass to biofuels, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize hexose sugars. In recent years, successful expression of a variety of designer cellulosomes on the cell surface of this bacterium has been demonstrated using the cell-consortium approach. This strategy minimized genomic interference on each strain upon genetic engineering, thereby maximizing the ability of each strain to grow, express, and secrete each enzyme. In addition, this strategy allows stoichiometric control of the cellulosome elements and facile exchange of the secreted proteins. A detailed procedure for display of designer cellulosomes on the cell surface of L. plantarum is described in this chapter.


Assuntos
Celulossomas/genética , Lactobacillus plantarum/genética , Proteínas de Bactérias/genética , Eletroporação/métodos , Expressão Gênica , Lactobacillus plantarum/crescimento & desenvolvimento , Engenharia Metabólica/métodos , Plasmídeos/genética
8.
Proc Natl Acad Sci U S A ; 115(48): E11274-E11283, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429330

RESUMO

Efficient degradation of plant cell walls by selected anaerobic bacteria is performed by large extracellular multienzyme complexes termed cellulosomes. The spatial arrangement within the cellulosome is organized by a protein called scaffoldin, which recruits the cellulolytic subunits through interactions between cohesin modules on the scaffoldin and dockerin modules on the enzymes. Although many structural studies of the individual components of cellulosomal scaffoldins have been performed, the role of interactions between individual cohesin modules and the flexible linker regions between them are still not entirely understood. Here, we report single-molecule measurements using FRET to study the conformational dynamics of a bimodular cohesin segment of the scaffoldin protein CipA of Clostridium thermocellum We observe compacted structures in solution that persist on the timescale of milliseconds. The compacted conformation is found to be in dynamic equilibrium with an extended state that shows distance fluctuations on the microsecond timescale. Shortening of the intercohesin linker does not destabilize the interactions but reduces the rate of contact formation. Upon addition of dockerin-containing enzymes, an extension of the flexible state is observed, but the cohesin-cohesin interactions persist. Using all-atom molecular-dynamics simulations of the system, we further identify possible intercohesin binding modes. Beyond the view of scaffoldin as "beads on a string," we propose that cohesin-cohesin interactions are an important factor for the precise spatial arrangement of the enzymatic subunits in the cellulosome that leads to the high catalytic synergy in these assemblies and should be considered when designing cellulosomes for industrial applications.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Celulossomas/química , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridium thermocellum/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Celulossomas/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica
9.
Sci Rep ; 8(1): 5051, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29568013

RESUMO

The assembly of the polysaccharide degradating cellulosome machinery is mediated by tight binding between cohesin and dockerin domains. We have used an empirical model known as FoldX as well as molecular mechanics methods to determine the free energy of binding between a cohesin and a dockerin from Clostridium thermocellum in two possible modes that differ by an approximately 180° rotation. Our studies suggest that the full-length wild-type complex exhibits dual binding at room temperature, i.e., the two modes of binding have comparable probabilities at equilibrium. The ability to bind in the two modes persists at elevated temperatures. However, single-point mutations or truncations of terminal segments in the dockerin result in shifting the equilibrium towards one of the binding modes. Our molecular dynamics simulations of mechanical stretching of the full-length wild-type cohesin-dockerin complex indicate that each mode of binding leads to two kinds of stretching pathways, which may be mistakenly taken as evidence of dual binding.


Assuntos
Proteínas de Ciclo Celular/química , Celulossomas/química , Proteínas Cromossômicas não Histona/química , Clostridium thermocellum/química , Complexos Multiproteicos/química , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Celulossomas/genética , Proteínas Cromossômicas não Histona/genética , Estruturas Cromossômicas , Simulação de Dinâmica Molecular , Complexos Multiproteicos/genética , Mutação Puntual , Polissacarídeos/química , Polissacarídeos/genética , Ligação Proteica
10.
J Am Chem Soc ; 139(49): 17841-17852, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29058444

RESUMO

Cellulosomes are polyprotein machineries that efficiently degrade cellulosic material. Crucial to their function are scaffolds consisting of highly homologous cohesin domains, which serve a dual role by coordinating a multiplicity of enzymes as well as anchoring the microbe to its substrate. Here we combined two approaches to elucidate the mechanical properties of the main scaffold ScaA of Acetivibrio cellulolyticus. A newly developed parallelized one-pot in vitro transcription-translation and protein pull-down protocol enabled high-throughput atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) measurements of all cohesins from ScaA with a single cantilever, thus promising improved relative force comparability. Albeit very similar in sequence, the hanging cohesins showed considerably lower unfolding forces than the bridging cohesins, which are subjected to force when the microbe is anchored to its substrate. Additionally, all-atom steered molecular dynamics (SMD) simulations on homology models offered insight into the process of cohesin unfolding under force. Based on the differences among the individual force propagation pathways and their associated correlation communities, we designed mutants to tune the mechanical stability of the weakest hanging cohesin. The proposed mutants were tested in a second high-throughput AFM SMFS experiment revealing that in one case a single alanine to glycine point mutation suffices to more than double the mechanical stability. In summary, we have successfully characterized the force induced unfolding behavior of all cohesins from the scaffoldin ScaA, as well as revealed how small changes in sequence can have large effects on force resilience in cohesin domains. Our strategy provides an efficient way to test and improve the mechanical integrity of protein domains in general.


Assuntos
Celulossomas/metabolismo , Celulossomas/ultraestrutura , Simulação por Computador , Microscopia de Força Atômica/métodos , Análise Espectral/métodos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Celulossomas/química , Celulossomas/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/ultraestrutura , Modelos Moleculares , Mutação , Domínios Proteicos , Desdobramento de Proteína
11.
J Biotechnol ; 263: 30-35, 2017 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29029999

RESUMO

Enzymatic fuel cells have received considerable attention because of their potential for direct conversion of abundant raw materials such as cellulose to electricity. The use of multi-enzyme cascades is particularly attractive as they offer the possibility of achieving a series of complex reactions at higher efficiencies. Here we reported the use of a DNA-guided approach to assemble a five-component enzyme cascade for direct conversion of cellulose to gluconic acid and H2O2. Site-specific co-localization of ß-glucosidase and glucose oxidase resulted in over 11-fold improvement in H2O2 production from cellobiose, highlighting the benefit of substrate channeling. Although a more modest 1.5-fold improvement in H2O2 production was observed using a five-enzyme cascade, due to H2O2 inhibition on enzyme activity, these results demonstrated the possibility to enhance the production of gluconic acid and H2O2 directly from cellulose by DNA-guided enzyme assembly.


Assuntos
Celulose/metabolismo , DNA/genética , Gluconatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas Recombinantes/metabolismo , Celulossomas/enzimologia , Celulossomas/genética , DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/genética , Proteínas Recombinantes/genética
12.
Nat Microbiol ; 2: 17087, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555641

RESUMO

Cellulosomes are large, multiprotein complexes that tether plant biomass-degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria, where species-specific dockerin domains mediate the assembly of enzymes onto cohesin motifs interspersed within protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic biology2,3. For decades, analogous structures have been reported in anaerobic fungi, which are known to assemble by sequence-divergent non-catalytic dockerin domains (NCDDs)4. However, the components, modular assembly mechanism and functional role of fungal cellulosomes remain unknown5,6. Here, we describe a comprehensive set of proteins critical to fungal cellulosome assembly, including conserved scaffolding proteins unique to the Neocallimastigomycota. High-quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single-molecule technology. Genomic analysis coupled with proteomic validation revealed an average of 312 NCDD-containing proteins per fungal strain, which were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across four genera that bind to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. However, the biocatalytic activity of anaerobic fungal cellulosomes is expanded by the inclusion of GH3, GH6 and GH45 enzymes. These findings suggest that the fungal cellulosome is an evolutionarily chimaeric structure-an independently evolved fungal complex that co-opted useful activities from bacterial neighbours within the gut microbiome.


Assuntos
Celulossomas/genética , Proteínas Fúngicas/genética , Genômica , Neocallimastigales/enzimologia , Neocallimastigales/genética , Ligação Proteica , Multimerização Proteica , Proteômica
13.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28314726

RESUMO

We investigated the global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" (WS3) in 16S rRNA gene as well as metagenomic data sets. We document distinct distribution patterns for various "Latescibacteria" orders in 16S rRNA gene data sets, with prevalence of orders sediment_1 in terrestrial, PBSIII_9 in groundwater and temperate freshwater, and GN03 in pelagic marine, saline-hypersaline, and wastewater habitats. Using a fragment recruitment approach, we identified 68.9 Mb of "Latescibacteria"-affiliated contigs in publicly available metagenomic data sets comprising 73,079 proteins. Metabolic reconstruction suggests a prevalent saprophytic lifestyle in all "Latescibacteria" orders, with marked capacities for the degradation of proteins, lipids, and polysaccharides predominant in plant, bacterial, fungal/crustacean, and eukaryotic algal cell walls. As well, extensive transport and central metabolic pathways for the metabolism of imported monomers were identified. Interestingly, genes and domains suggestive of the production of a cellulosome-e.g., protein-coding genes harboring dockerin I domains attached to a glycosyl hydrolase and scaffoldin-encoding genes harboring cohesin I and CBM37 domains-were identified in order PBSIII_9, GN03, and MSB-4E2 fragments recovered from four anoxic aquatic habitats; hence extending the cellulosomal production capabilities in Bacteria beyond the Gram-positive Firmicutes In addition to fermentative pathways, a complete electron transport chain with terminal cytochrome c oxidases Caa3 (for operation under high oxygen tension) and Cbb3 (for operation under low oxygen tension) were identified in PBSIII_9 and GN03 fragments recovered from oxygenated and partially/seasonally oxygenated aquatic habitats. Our metagenomic recruitment effort hence represents a comprehensive pangenomic view of this yet-uncultured phylum and provides insights broader than and complementary to those gained from genome recovery initiatives focusing on a single or few sampled environments.IMPORTANCE Our understanding of the phylogenetic diversity, metabolic capabilities, and ecological roles of yet-uncultured microorganisms is rapidly expanding. However, recent efforts mainly have been focused on recovering genomes of novel microbial lineages from a specific sampling site, rather than from a wide range of environmental habitats. To comprehensively evaluate the genomic landscape, putative metabolic capabilities, and ecological roles of yet-uncultured candidate phyla, efforts that focus on the recovery of genomic fragments from a wide range of habitats and that adequately sample the intraphylum diversity within a specific target lineage are needed. Here, we investigated the global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" Our results document the preference of specific "Latescibacteria" orders to specific habitats, the prevalence of plant polysaccharide degradation abilities within all "Latescibacteria" orders, the occurrence of all genes/domains necessary for the production of cellulosomes within three "Latescibacteria" orders (GN03, PBSIII_9, and MSB-4E2) in data sets recovered from anaerobic locations, and the identification of the components of an aerobic respiratory chain, as well as occurrence of multiple O2-dependent metabolic reactions in "Latescibacteria" orders GN03 and PBSIII_9 recovered from oxygenated habitats. The results demonstrate the value of phylocentric pangenomic surveys for understanding the global ecological distribution and panmetabolic abilities of yet-uncultured microbial lineages since they provide broader and more complementary insights than those gained from single-cell genomic and/or metagenomic-enabled genome recovery efforts focusing on a single sampling site.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Água Doce/microbiologia , Variação Genética , Água Subterrânea/microbiologia , Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulossomas/genética , Celulossomas/metabolismo , DNA Bacteriano/genética , Ecossistema , Genômica , Filogenia , RNA Ribossômico 16S/genética
14.
Enzyme Microb Technol ; 97: 63-70, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28010774

RESUMO

Three cellulosomal subunits of Ruminiclostridium josui, the full-length scaffolding protein CipA (RjCipA), a cellulase Cel5B (RjCel5B) and a xylanase Xyn10C (RjXyn10C), were successfully produced by Escherichia coli recombinant clones. RjCel5B and RjXyn10C were characterized as an endoglucanase and an endoxylanase, respectively. RjCipA, RjCel5B and Xyn10C adsorbed to microcrystalline cellulose (Funacel) and rice straw powder. Interaction between RjCel5B and RjCipA, and RjXyn10C and RjCipA were confirmed by qualitative assays. When a fixed amount of RjCel5B was mixed with different amounts of RjCipA, i.e., at the molar ratio of 6:1 or 6:6, the 6:6 complex showed 6.6-fold higher activity toward Funacel and 11.5-fold higher activity toward rice straw powder than RjCel5B, whereas the 6:1 complex showed only 2.8- and 3.9-folds higher activities toward Funacel and rice straw powder, respectively, than RjCel5B. These results suggest that the family-3 carbohydrate binding module (CBM3) of RjCipA in the RjCel5B-RjCipA complex plays an important role for hydrolysis of cellulose and the substrate-targeting effect of the CBM is more significant than the proximity effect caused by the presence of plural catalytic subunits adjoining each other. In contrast, the 6:1 complex of RjXyn10C and RjCipA showed 45% and 28% of the activities of RjXyn10C toward insoluble wheat arabinoxylan and rice straw powder, respectively. These results suggest that both a negative proximity effect and substrate-isolating effect, but not substrate-targeting effect, are caused by the CBM3 with inappropriate polysaccharide specificity. Substrate-targeting, proximity and substrate-isolating effects are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Clostridiales/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Proteínas de Bactérias/genética , Biocombustíveis , Biomassa , Biotecnologia , Celulase/genética , Celulossomas/enzimologia , Celulossomas/genética , Celulossomas/metabolismo , Clostridiales/enzimologia , Clostridiales/genética , Endo-1,4-beta-Xilanases/genética , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Environ Microbiol ; 19(1): 185-197, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27712009

RESUMO

The cellulosome is an extracellular multi-enzyme complex that is considered one of the most efficient plant cell wall-degrading strategies devised by nature. Its unique modular architecture, achieved by high affinity and specific interaction between protein modules (cohesins and dockerins) enables formation of various enzyme combinations. Extensive research has been dedicated to the mechanistic nature of the cellulosome complex. Nevertheless, little is known regarding its distribution and abundance among microbes in natural plant fibre-rich environments. Here, we explored these questions in bovine rumen microbial communities, specialized in efficient degradation of lignocellulosic plant material. We bioinformatically screened for cellulosomal modules in this complex environment using a previously published ultra-deep fibre-adherent rumen metagenome. Intriguingly, a large portion of the functions of the dockerin-containing proteins were related to alternative biological processes, and not necessarily to the classic fibre degradation function. Our analysis was experimentally validated by characterizing specific interactions between selected cohesins and dockerins and revealed that cellulosome is a more generalized strategy used by diverse bacteria, some of which were not previously associated with cellulosome production. Remarkably, our results provide additional proof of similarity among rumen microbial communities worldwide. This study suggests a broader and widespread role for the cellulosomal machinery in nature.


Assuntos
Bactérias/isolamento & purificação , Celulossomas/enzimologia , Microbioma Gastrointestinal , Filogenia , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Celulossomas/genética , Metagenoma , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo
16.
Environ Microbiol ; 18(12): 5112-5122, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27555215

RESUMO

Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non-autolytic and exhibits lysozyme-mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell-free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell-free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/enzimologia , Muramidase/metabolismo , Ruminococcus/enzimologia , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Celulose/metabolismo , Celulossomas/genética , Celulossomas/metabolismo , Humanos , Muramidase/genética , Ruminococcus/genética , Ruminococcus/metabolismo
17.
Proc Natl Acad Sci U S A ; 113(26): 7136-41, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298375

RESUMO

The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted ß-glucans, ß-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize ß-glucans and ß-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulossomas/química , Celulossomas/genética , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeos/química , Ligação Proteica , Ruminococcus/química , Ruminococcus/genética
18.
Appl Microbiol Biotechnol ; 100(20): 8731-43, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27207145

RESUMO

Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium Clostridium thermocellum. The scaffoldin was combined with four thermophilic enzymes from Geobacillus and Caldicellulosiruptor species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.


Assuntos
Celulossomas/metabolismo , Celulossomas/efeitos da radiação , Temperatura Alta , Lignina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Celulossomas/química , Celulossomas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Estabilidade Enzimática , Firmicutes/genética , Hidrólise , Zea mays/metabolismo
19.
mBio ; 7(2): e00083, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048796

RESUMO

UNLABELLED: Designer cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression levels, instability (cleavage) of the scaffoldin polypeptide, and limited numbers of available cohesin-dockerin specificities-the hallmark of designer cellulosomes. Nevertheless, increasing the number of enzymes integrated into designer cellulosomes is critical, in order to further enhance degradation of plant cell wall material. Adaptor scaffoldins comprise an intermediate type of scaffoldin that can both incorporate various enzymes and attach to an additional scaffoldin. Using this strategy, we constructed an efficient form of adaptor scaffoldin that possesses three type I cohesins for enzyme integration, a single type II dockerin for interaction with an additional scaffoldin, and a carbohydrate-binding module for targeting to the cellulosic substrate. In parallel, we designed a hexavalent scaffoldin capable of connecting to the adaptor scaffoldin by the incorporation of an appropriate type II cohesin. The resultant extended designer cellulosome comprised 8 recombinant enzymes-4 xylanases and 4 cellulases-thereby representing a potent enzymatic cocktail for solubilization of natural lignocellulosic substrates. The contribution of the adaptor scaffoldin clearly demonstrated that proximity between the two scaffoldins and their composite set of enzymes is crucial for optimized degradation. After 72 h of incubation, the performance of the extended designer cellulosome was determined to be approximately 70% compared to that of native cellulosomes. IMPORTANCE: Plant cell wall residues represent a major source of renewable biomass for the production of biofuels such as ethanol via breakdown to soluble sugars. The natural microbial degradation process, however, is inefficient for achieving cost-effective processes in the conversion of plant-derived biomass to biofuels, either from dedicated crops or human-generated cellulosic wastes. The accumulation of the latter is considered a major environmental pollutant. The development of designer cellulosome nanodevices for enhanced plant cell wall degradation thus has major impacts in the fields of environmental pollution, bioenergy production, and biotechnology in general. The findings reported in this article comprise a true breakthrough in our capacity to produce extended designer cellulosomes via synthetic biology means, thus enabling the assembly of higher-order complexes that can supersede the number of enzymes included in a single multienzyme complex.


Assuntos
Celulossomas/genética , Celulossomas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Celulose/metabolismo , Hidrólise , Ligação Proteica
20.
PLoS One ; 11(1): e0146316, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731480

RESUMO

The Gram-positive, anaerobic, cellulolytic, thermophile Clostridium (Ruminiclostridium) thermocellum secretes a multi-enzyme system called the cellulosome to solubilize plant cell wall polysaccharides. During the saccharolytic process, the enzymatic composition of the cellulosome is modulated according to the type of polysaccharide(s) present in the environment. C. thermocellum has a set of eight alternative RNA polymerase sigma (σ) factors that are activated in response to extracellular polysaccharides and share sequence similarity to the Bacillus subtilis σI factor. The aim of the present work was to demonstrate whether individual C. thermocellum σI-like factors regulate specific cellulosomal genes, focusing on C. thermocellum σI6 and σI3 factors. To search for putative σI6- and σI3-dependent promoters, bioinformatic analysis of the upstream regions of the cellulosomal genes was performed. Because of the limited genetic tools available for C. thermocellum, the functionality of the predicted σI6- and σI3-dependent promoters was studied in B. subtilis as a heterologous host. This system enabled observation of the activation of 10 predicted σI6-dependent promoters associated with the C. thermocellum genes: sigI6 (itself, Clo1313_2778), xyn11B (Clo1313_0522), xyn10D (Clo1313_0177), xyn10Z (Clo1313_2635), xyn10Y (Clo1313_1305), cel9V (Clo1313_0349), cseP (Clo1313_2188), sigI1 (Clo1313_2174), cipA (Clo1313_0627), and rsgI5 (Clo1313_0985). Additionally, we observed the activation of 4 predicted σI3-dependent promoters associated with the C. thermocellum genes: sigI3 (itself, Clo1313_1911), pl11 (Clo1313_1983), ce12 (Clo1313_0693) and cipA. Our results suggest possible regulons of σI6 and σI3 in C. thermocellum, as well as the σI6 and σI3 promoter consensus sequences. The proposed -35 and -10 promoter consensus elements of σI6 are CNNAAA and CGAA, respectively. Additionally, a less conserved CGA sequence next to the C in the -35 element and a highly conserved AT sequence three bases downstream of the -10 element were also identified as important nucleotides for promoter recognition. Regarding σI3, the proposed -35 and -10 promoter consensus elements are CCCYYAAA and CGWA, respectively. The present study provides new clues for understanding these recently discovered alternative σI factors.


Assuntos
Bacillus subtilis/metabolismo , Biomassa , Clostridium thermocellum/metabolismo , Regulon/fisiologia , Fator sigma/metabolismo , Bacillus subtilis/genética , Celulossomas/genética , Celulossomas/metabolismo , Clostridium thermocellum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...